Unit 6

Quine-McClusky Method

Outline

- Determination of prime implicants
- The prime implicant chart
- Petrick's method
- Simplification of incompletely specified functions

Overview (1/2)

- A systematic simplification procedure
- Input: minterm expansion

Output: a minimum sum of products Step:

- 1. Generate all prime implicants

Eliminate as many literals as possible from each term by systematically applying the theorem

$$
X Y+X Y^{\prime}=X
$$

-2 . Find the minimum solution Use a prime implicant chart to select a minimum set of prime implicants which contain a minimum number of literals

Overview (2/2)

- Example: $F(a, b, c)=a^{\prime} b^{\prime} c^{\prime}+a b^{\prime} c^{\prime}+a b^{\prime} c+a b c$

All implicants:

$$
a^{\prime} b^{\prime} c^{\prime}, a b^{\prime} c^{\prime}, a b^{\prime} c, a b c, a b^{\prime}, b^{\prime} c^{\prime}, a c
$$

Prime implicants:

$$
a b^{\prime}, b^{\prime} c^{\prime}, a c
$$

Essential prime implicants: $b^{\prime} c^{\prime}, a c$
Minimum sum of products:

$$
F(a, b, c)=b^{\prime} c^{\prime}+a c
$$

Determination of Prime Implicants (1/5)

- Example: Find all of the prime implicants of the function

$$
f(a, b, c, d)=\operatorname{\sum m}(0,1,2,5,6,7,8,9,10,14)
$$

Column I			Column II		Column III
group 0	0	0000	0,1	000-	0, 1, 8, 9 -00-
	- 1	0001	0,2	00-0	0, 2, 8, $10 \quad-0-0$
group 1	2	0010	0, 8	-000	$0,8,1,9 \quad 00$
	- 8	1000	1,5	0-01	0,8,2,10 - 0
	-5	0101	1,9	-001	2, 6, 10, $14-\mathrm{-10}$
	6	0110	2, 6	0-10	$\underline{2,10,6,14-10}$
group		1001	2, 10	-010	
	10	1010	8, 9	100-	
		0111	8,10	10-0	
group		1110	5,7	01-1	
			6,7	011-	
			6,14	-110	
			10,14	1-10	

Determination of Prime Implicants (2/5)

Column I			Column II		Column III	
group 0 group 1	0	0000 V	0,1	000- V	0, 1, 8, 9	-00- P4
	1	0001 V	0, 2	00-0 V	0, 2, 8, 10	-0-0 P5
	2	0010 V	0, 8	-000 V	$0,8,1,9$	-00-
	8	1000 V	1,5	0-01 P1	0,8,2,10	-0
group 2	5	0101 V	1,9	-001 V	2, 6, 10, 14	--10 P6
	6	0110 V	2, 6	$0-10 \mathrm{~V}$	$\underline{2,10,6,14}$	-10
	9	1001 V	2, 10	-010 V		
group $3-$	10	1010 V	8, 9	100- V	All of the prime	mplicants:
		0111 V	8,10	10-0 V	$P 1=\{1,5\}=0$	$=a^{\prime} c^{\prime} d$
		1110 V	5, 7	01-1 P2	$P 2=\{5,7\}=0$	$=a^{\prime} b d$
			6,7	011-P3	$P 3=\{6,7\}=011$	$=a^{\prime} b c$ $-00-=b^{\prime} c^{\prime}$
			6,14	-110 V	$\begin{aligned} & \text { P4 }\end{aligned}=\{0,1,8,9\}=$	
			10, 14	1-10 V	$P 6=\{2,6,10,14\}$	$=-10=$

Determination of Prime Implicants (3/5)

- Find all of the prime implicants
- (1) Represent each minterm by a binary code
- (2) Find the decimal number for each binary code
- (3) Define the number of 1's in binary number as the index of the number.
- (3-1) Group all the binary numbers of the same index into a group
- (3-2) List all the groups in a column in the index ascending order
- (3-3) Within each group, the binary number are listed in the ascending order of their decimal-number equivalent

Determination of Prime Implicants (4/5)

- (4) Start with the terms in the set of lowest index; compare them with those, if any, in the set whose index is 1 greater, and eliminate all redundant variables by $\mathrm{XY}+\mathrm{XY}{ }^{\prime}=\mathrm{X}$
- (5) Check off all the terms that entered into the combinations. The ones that are left are prime implicants
- (6) Repeat step (4) and (5) until no further reduction is possible

Determination of Prime Implicants (5/5)

$$
\begin{aligned}
& f=a^{\prime} c^{\prime} d+a^{\prime} b d+a^{\prime} b c+c d^{\prime}+b^{\prime} d^{\prime}+b^{\prime} c^{\prime} \\
& (1,5) \quad(5,7) \quad(6,7) \quad(2,6,10,14) \quad(0,2,8,10) \quad(0,1,8,9) \\
& \begin{array}{llllll}
\text { P1 } & \text { P2 } & \text { P3 } & \text { P4 } & \text { P5 } & \text { P6 }
\end{array}
\end{aligned}
$$

Minimum form ???

$$
f=a^{\prime} b d+c d^{\prime}+b^{\prime} c^{\prime}
$$

The Prime Implicant Chart (1/7)

- Example:

Prime Implicant Table

The Prime Implicant Chart (2/7)

Prime Implicant Table

No secondary essential term.

Include the essential prime implicants in the minimal sum;
The minimal sum is:
$\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\mathrm{b}^{\prime} \mathrm{c}^{\prime}+\mathrm{cd}^{\prime}+\mathrm{a}^{\prime} \mathrm{bd}$

The Prime Implicant Chart (3/7)

- Construct the Prime Implicant Table (Chart) and find the Essential Prime Implicants of the function
- (1) Construct the prime implicant table
- (1-1) Each column carries a decimal number at the top which correspond to the one of the minterm in the given function
- (1-2) The column are assigned by such a number in ascending order
- (1-3) Each row corresponds to one of the prime implicants, P1, P2, ...

The Prime Implicant Chart (4/7)

- (2) Make a cross under each decimal number that is a term contained in the prime implicant represented by that row
- (3) Find all the columns that contain a single cross and circle them; place an asterisk * at the left of those rows in which you circle a cross

The rows marked with an asterisk are the essential prime implicants

The Prime Implicant Chart (5/7)

- Example with a cyclic prime implicant table

Sol: Find all of the prime implicants

$$
F=\Sigma m(0,1,2,5,6,7)
$$

$\underline{0} \quad 000 \vee \quad 0,1 \quad 00-\quad \mathrm{P} 1$
$1001 \sqrt{ } \quad \underline{0,2} \quad 0-0 \quad \mathrm{P} 2$
$\underline{2} 010 \sqrt{ } 1,5 \quad-01 \quad$ P3

| 5 | 101 | | |
| :--- | :--- | :--- | :--- | :--- |
| V | $\underline{2,6}$ | -10 | P 4 |

$\begin{array}{lllll}6 & 110 \\ & \sqrt{2} & 5,7 & 1-1 & P 5\end{array}$

The Prime Implicant Chart (6/7)

Select P1 first

The minimum sum of products $\quad F=a^{\prime} b^{\prime}+b c^{\prime}+a c$

The Prime Implicant Chart (717)

Select P2 first

The minimum sum of products $\quad F=a^{\prime} c^{\prime}+b^{\prime} c^{\prime}+a b$ The minimum sum of product is not unique

Petrick's Method (1/6)

- A technique for determining all minimum sum-of-products solutions from a prime implicant table
- Before applying Petrick's method, all essential prime implicants and minterms they cover should be removed from the table

Petrick's Method (2/6)

- Example: $\quad F=\Sigma m(0,1,2,5,6,7)$

			0	1	2	5	6	7
P_{1}	$(0,1)$	$a^{\prime} b^{\prime}$	\times	\times				
P_{2}	$(0,2)$	$a^{\prime} c^{\prime}$	\times		\times			
P_{3}	$(1,5)$	$b^{\prime} c$		\times		\times		
P_{4}	$(2,6)$	$b c^{\prime}$			\times		\times	
P_{5}	$(5,7)$	$a c$				\times		\times
P_{6}	$(6,7)$	$a b$					\times	\times

Petrick's Method (3/6)

- In order to cover minterm 0 , we must choose P_{1} or P_{2}
- the expression $\mathrm{P}_{1}+\mathrm{P}_{2}$ must be true

$$
\text { cover }
$$

Petrick's Method (4/6)

Using $(X+Y)(X+Z)=X+Y Z$ and the distributive law

$$
\begin{aligned}
P= & \left(P_{1}+P_{2}\right)\left(P_{1}+P_{3}\right)\left(P_{2}+P_{4}\right)\left(P_{3}+P_{5}\right)\left(P_{4}+P_{6}\right)\left(P_{5}+P_{6}\right)=1 \\
\boldsymbol{P}= & \left(\boldsymbol{P}_{\mathbf{1}}+\boldsymbol{P}_{\mathbf{2}} \boldsymbol{P}_{\mathbf{3}}\right)\left(\boldsymbol{P}_{4}+\boldsymbol{P}_{\mathbf{2}} \boldsymbol{P}_{\mathbf{6}}\right)\left(\boldsymbol{P}_{5}+\boldsymbol{P}_{\mathbf{3}} \boldsymbol{P}_{\mathbf{6}}\right) \\
= & \left(\boldsymbol{P}_{\mathbf{1}} \boldsymbol{P}_{4}+\boldsymbol{P}_{\mathbf{1}} \boldsymbol{P}_{2} \boldsymbol{P}_{\mathbf{6}}+\boldsymbol{P}_{\mathbf{2}} \boldsymbol{P}_{3} \boldsymbol{P}_{4}+\boldsymbol{P}_{2} \boldsymbol{P}_{\mathbf{3}} \boldsymbol{P}_{6}\right)\left(\boldsymbol{P}_{5}+\boldsymbol{P}_{3} \boldsymbol{P}_{\mathbf{6}}\right) \\
= & \boldsymbol{P}_{\mathbf{1}} \boldsymbol{P}_{\mathbf{4}} \boldsymbol{P}_{5}+\boldsymbol{P}_{\mathbf{1}} \boldsymbol{P}_{2} \boldsymbol{P}_{5} \boldsymbol{P}_{\mathbf{6}}+\boldsymbol{P}_{\mathbf{2}} \boldsymbol{P}_{\mathbf{3}} \boldsymbol{P}_{4} \boldsymbol{P}_{5}+\boldsymbol{P}_{\mathbf{2}} \boldsymbol{P}_{\mathbf{3}} \boldsymbol{P}_{5} \boldsymbol{P}_{\mathbf{6}}+\boldsymbol{P}_{\mathbf{1}} \boldsymbol{P}_{3} \boldsymbol{P}_{4} \boldsymbol{P}_{\mathbf{6}} \\
& +\boldsymbol{P}_{\mathbf{1}} \boldsymbol{P}_{\mathbf{2}} \boldsymbol{P}_{\mathbf{3}} \boldsymbol{P}_{\mathbf{6}}+\boldsymbol{P}_{\mathbf{2}} \boldsymbol{P}_{\mathbf{3}} \boldsymbol{P}_{\mathbf{4}} \boldsymbol{P}_{\mathbf{6}}+\boldsymbol{P}_{\mathbf{2}} \boldsymbol{P}_{\mathbf{3}} \boldsymbol{P}_{\mathbf{6}}
\end{aligned}
$$

Petrick's Method (5/6)

Use $X+X Y=X$ to delete redundant terms from P

$$
\begin{aligned}
& P=P_{1} P_{4} P_{5}+P_{1} P_{2} P_{5} P_{6}+P_{2} P_{3} P_{4} P_{5}+\underline{P_{2} P_{3} P_{5} P_{6}} \\
& \quad+P_{1} P_{3} P_{4} P_{6}+P_{1} P_{2} P_{3} P_{6}+P_{2} P_{3} P_{4} P_{6}+P_{2} P_{3} P_{6} \\
& =P_{1} P_{4} P_{5}+P_{1} P_{2} P_{5} P_{6}+P_{2} P_{3} P_{4} P_{5}+P_{1} P_{3} P_{4} P_{6}+\underline{P_{2} P_{3} P_{6}} \\
& 3 \text { implicants } 4
\end{aligned}
$$

Two minimum solutions:

$$
\begin{aligned}
& F=P_{1}+P_{4}+P_{5}=a^{\prime} b^{\prime}+b c^{\prime}+a c \\
& F=P_{2}+P_{3}+P_{6}=a^{\prime} c^{\prime}+b^{\prime} c+a b
\end{aligned}
$$

Petrick's Method (6/6)

- Petrick's Method
-1 . Label the rows of the table, $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots$
- 2. Form a logic function $\mathrm{P}\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots\right)$, which is true when all of the minterms in the table have been covered
-3 . Reduce P to a minimum sum of products using $(\mathrm{X}+\mathrm{Y})(\mathrm{X}+\mathrm{Z})=\mathrm{X}+\mathrm{YZ}$ and $\mathrm{X}+\mathrm{XY}=\mathrm{X}$
-4 . Select one solution that has minimum number of prime implicant, minimum number of literals

Simplification of Incompletely Specified Functions (1/3)

- Modify the Quine-McCluskey procedure
- Finding the Prime Implicants
- Treat the don't care terms as if they were required minterms
- Forming the Prime Implicant Table
- The don't cares are not listed at the top of the table

Simplification of Incompletely Specified Functions (2/3)

- Example: Simplify $F(A, B, C, D)=\Sigma m(2,3,7,9,11,13)+\Sigma d(1,10,15)$

Sol: Treat the don't cares $(1,10,15)$ as required minterms

-	0001 V	$(1,3)$	00-1 V	(1, 3, 9, 11)	-0-1
2	0010 v	$(1,9)$	-001 V	(2, 3, 10, 11)	-01-
3	0011 V	$(2,3)$	001-v	(3, 7, 11, 15)	--11
9	1001 V	$(2,10)$	-010 V	$(9,11,13,15)$	1--1
- 10	1010 V	$(3,7)$	$0-11 \mathrm{~V}$		
7	0111 V	$(3,11)$	-011 V		
11	1011 V	$(9,11)$	10-1 V		
13	1101 V	$(9,13)$	$1-01 \mathrm{~V}$		
- 15	1111 V	$(10,11)$	101-v		
		$(7,15)$	-111 V		
		$(11,15)$	$1-11 \mathrm{~V}$		
		$(13,15)$	$11-1 \mathrm{~V}$		

Simplification of Incompletely Specified Functions (3/3) =aw

- The don't cares are not listed at the top of the table

